
Validating the Performance of
GPU-Offloading with Differential

Performance Models

13 August 2024 Department of Computer Science | Laboratory for Parallel Programming | Alexander Geiß 1

▪ When offloading computation to the GPU we expect

▪ Things to get faster

▪ More energy efficient

▪ Are these expectations for a specific code fulfilled?

▪ What about individual application parts?

▪ What happens when scaling up?

13 August 2024 Department of Computer Science | Laboratory for Parallel Programming | Alexander Geiß 2

Motivation

Obtain
hardware
capabilities

1

Collect
baseline for
the CPU-only
version

2

Benchmark
the GPU port

3

Generate
performance
models and
explore them

4

13 August 2024 Department of Computer Science | Laboratory for Parallel Programming | Alexander Geiß 3

Workflow

▪ Once per system/hardware

▪ Determining hardware capabilities

▪ We use roofline models

▪ Easy to create & understand

▪ Generated with empirical roofline toolkit

13 August 2024 Department of Computer Science | Laboratory for Parallel Programming | Alexander Geiß 4

1. Obtaining Hardware
Capabilities

2. Baseline Measurements

13 August 2024 Department of Computer Science | Laboratory for Parallel Programming | Alexander Geiß 5

Instrumentation

CPU-only

application

Structured

experiments

Instrumented

application
Ranks

S
iz

e

Measurements

Contain data for:

• Runtime

• FLOPs

• Memory accesses

• Energy

3. Benchmark the GPU port

13 August 2024 Department of Computer Science | Laboratory for Parallel Programming | Alexander Geiß 6

Instrumentation

GPU port of

application

Structured

experiments

Instrumented

application
Ranks

S
iz

e

Measurements

Must contain all

information neccessary

for modeling.

(Including CPU data)

Joint CPU–GPU-Profiling

13 August 2024 Department of Computer Science | Laboratory for Parallel Programming | Alexander Geiß 7

cudaStream_t stream1, stream2;
void foo(double* a_gpu, ...) { ...
cudaMemcpyAsync(a_gpu, ..., H2D, stream2);
gpu_foo<<<..., stream2>>>(a_gpu, ...); ...

}

void bar(...) { ...
gpu_bar<<<..., stream1>>>(...); ...

}

int main() { ...
foo(a_gpu, ...); ...
bar(...); ...
qux(...); ...
cudaDeviceSynchronize(); ...

}

GPU Profiler

CPU Profiler

Joint CPU–GPU-Profiling II

13 August 2024 Department of Computer Science | Laboratory for Parallel Programming | Alexander Geiß 8

▪ We collect timestamps on start and end of each function and kernel

▪ Using compiler instrumentation on CPU

▪ CUPTI Callback API for GPU

▪ We profile the CPU and trace the GPU events

▪ We store only limited trace data

▪ Calling context is tracked

▪ During post-processing we convert to a unified profile

Joint CPU–GPU-Profiling III

13 August 2024 Department of Computer Science | Laboratory for Parallel Programming | Alexander Geiß 9

▪ This allows recording of

▪ Synchronization of GPU actions with

CPU functions

▪ Overlap of concurrent GPU activities

▪ Small result files with data necessary

for modeling

▪ Full call path up to kernel

4. Differential Performance
Modeling

13 August 2024 Department of Computer Science | Laboratory for Parallel Programming | Alexander Geiß 10

Instrumentation

(Score-P, Extra-

Profiler)
Your application

Structured

experiments

Instrumented

application
Ranks

S
iz

e

Measurements CPU

Measurements GPU

Differential

performance modeling

Model

exploration

Ranks

S
iz

e

Models

Performance

differences

depending on

Rank and Size

Call-tree mapping

Defining expectations

Calculating differential models

Checking expectations

13 August 2024 Department of Computer Science | Laboratory for Parallel Programming | Alexander Geiß 11

4. Differential performance
modeling

▪ Prefix matching with aggregation

13 August 2024 Department of Computer Science | Laboratory for Parallel Programming | Alexander Geiß 12

Call-Tree Mapping
Remember we are

using exclusive values

• Runtime of GPU port is lower than
runtime of CPU-only version

Faster than
CPU-only

implementation

• Energy usage of GPU port is lower
than runtime of CPU-only version

Uses less energy

• Achieves same or higher hardware
efficiency

Uses the
hardware well

13 August 2024 Department of Computer Science | Laboratory for Parallel Programming | Alexander Geiß 13

Defining Expectations

Performance Modeling with
Extra-P

Department of Computer Science | Laboratory for Parallel Programming | Alexander Geiß 14

https://www.youtube.com/watc

h?v=Cv2YRCMWqBM

Watch Extra-P

overview video

13 August 2024

https://www.youtube.com/watch?v=Cv2YRCMWqBM
https://www.youtube.com/watch?v=Cv2YRCMWqBM

Automatic Performance
Modeling

Department of Computer Science | Laboratory for Parallel Programming | Alexander Geiß 15

Mj

main() {
foo()
bar()
compute()

}

Instrumentation

Performance measurements

Input

Output

Mi

Extra-P

• All functions

Human-readable

performance models

of all functions

(e.g., 𝑡 𝑝 = 𝑐1 ⋅ log(𝑝) + 𝑐2)

13 August 2024

Performance Model Normal
Form

Department of Computer Science | Laboratory for Parallel Programming | Alexander Geiß 16

𝑛 ∈ ℕ
𝑖𝑘 ∈ 𝐼
𝑗𝑘 ∈ 𝐽
𝐼, 𝐽 ⊂ ℚ

𝑓 𝑥 =

𝑘=1

𝑛

𝑐𝑘 ⋅ 𝑥
𝑖𝑘 ∙ 𝑙𝑜𝑔2

𝑗𝑘(𝑥)

𝑛 = 1
𝐼 = 0, 1, 2
𝐽 = {0, 1}

𝑐1
𝑐1 ⋅ 𝑥
𝑐1 ⋅ 𝑥

2

𝑐1 ⋅ log 𝑥
𝑐1 ⋅ 𝑥 ⋅ log 𝑥
𝑐1 ⋅ 𝑥

2 ⋅ log 𝑥

13 August 2024

▪ All models 𝑓𝑐
GPU and 𝑓𝑐

CPU are mathematical expressions

▪ We can calculate with them

Differential models express the difference

▪ Δ𝑐 𝑝1, … = 𝑓𝑐
GPU 𝑝1, … − 𝑓𝑐

CPU 𝑝1, …

▪ For a specific call tree entry 𝑐

13 August 2024 Department of Computer Science | Laboratory for Parallel Programming | Alexander Geiß 17

Calculating Differential Models

Hardware efficiency =
achieved FLOPs per second
achievable FLOPs per second

▪ Modeled with Extra-P

▪ We build models for FLOPs, time, and memory

accesses from measurements

▪ All models are mathematical expressions

▪ We present this as a hardware adjusted runtime

model to the user

13 August 2024 Department of Computer Science | Laboratory for Parallel Programming | Alexander Geiß 18

Hardware Efficiency

Interactive Exploration

Department of Computer Science | Laboratory for Parallel Programming | Alexander Geiß 19
WP2: Measuring, Modelling, Mapping & Monitoring

Select

configuration
Ranking best and

worst call paths

Behavior of

selected call path

Interactive Exploration

Department of Computer Science | Laboratory for Parallel Programming | Alexander Geiß 20
WP2: Measuring, Modelling, Mapping & Monitoring

Select

configuration
Ranking best and

worst call paths

Behavior of

selected call path

Interactive Exploration

13 August 2024 Department of Computer Science | Laboratory for Parallel Programming | Alexander Geiß 21

Differential
performance models

Result: GPU port...
... is slower than expected

... is faster than expected

... meets expectation

Result: GPU port is asymptotically...

... slower than expected

... faster than expected

... faster and slower than expected
depending on the parameter

Summary

13 August 2024 Department of Computer Science | Laboratory for Parallel Programming | Alexander Geiß 22

Instrumentation

(Score-P, Extra-

Profiler)
Your application

Structured

experiments

Instrumented

application
Ranks

S
iz

e

Measurements CPU

Measurements GPU

Differential

performance modeling

Model

exploration

Code

optimization

(User)Optimized

application

Ranks

S
iz

e

Models

Performance

differences

depending on

Rank and Size

Repeat to validate and

continue improving

We acknowledge the support of the European Commission and the German Federal

Ministry of Education and Research (BMBF) under the EuroHPC programme DEEP-

SEA (GA 955606, BMBF funding No. 16HPC015), which receives support from the

European Union's Horizon 2020 programme and DE, FR, ES, GR, BE, SE, GB, CH.

This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German

Research Foundation) – Project No. 449683531 (ExtraNoise).

13 August 2024 Department of Computer Science | Laboratory for Parallel Programming | Alexander Geiß 23

Acknowledgement

	Standardabschnitt
	Folie 1: Validating the Performance of GPU-Offloading with Differential Performance Models
	Folie 2: Motivation
	Folie 3: Workflow
	Folie 4: 1. Obtaining Hardware Capabilities
	Folie 5: 2. Baseline Measurements
	Folie 6: 3. Benchmark the GPU port
	Folie 7: Joint CPU–GPU-Profiling
	Folie 8: Joint CPU–GPU-Profiling II
	Folie 9: Joint CPU–GPU-Profiling III
	Folie 10: 4. Differential Performance Modeling
	Folie 11: 4. Differential performance modeling
	Folie 12: Call-Tree Mapping
	Folie 13: Defining Expectations
	Folie 14: Performance Modeling with Extra-P
	Folie 15: Automatic Performance Modeling
	Folie 16: Performance Model Normal Form
	Folie 17: Calculating Differential Models
	Folie 18: Hardware Efficiency
	Folie 19: Interactive Exploration
	Folie 20: Interactive Exploration
	Folie 21: Interactive Exploration
	Folie 22: Summary
	Folie 23: Acknowledgement

