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GPU-Offloading with Differential 
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13 August  2024 Department of Computer Science | Laboratory for Parallel Programming | Alexander Geiß 1



▪ When offloading computation to the GPU we expect

▪ Things to get faster

▪ More energy efficient

▪ Are these expectations for a specific code fulfilled?

▪ What about individual application parts?

▪ What happens when scaling up?
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Motivation



Obtain 
hardware 
capabilities

1

Collect 
baseline for 
the CPU-only 
version

2

Benchmark 
the GPU port

3

Generate 
performance 
models and 
explore them

4
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Workflow



▪ Once per system/hardware

▪ Determining hardware capabilities

▪ We use roofline models

▪ Easy to create & understand

▪ Generated with empirical roofline toolkit
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1. Obtaining Hardware 
Capabilities

  

   

    

             

                               

 
 
 
 
 
 
  
  
 
 

            

                                                                                  

  

   

    

     

             

                                

 
 
 
 
 
 
 
 
 
 
 
 

            

                                                                            



2. Baseline Measurements
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Instrumentation

CPU-only

application

Structured 

experiments

Instrumented 

application
Ranks

S
iz

e

Measurements

Contain data for:

• Runtime

• FLOPs

• Memory accesses

• Energy



3. Benchmark the GPU port
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Instrumentation

GPU port of

application

Structured 

experiments

Instrumented 

application
Ranks

S
iz

e

Measurements

Must contain all 

information neccessary 

for modeling. 

(Including CPU data)



Joint CPU–GPU-Profiling
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cudaStream_t stream1, stream2;
void foo(double* a_gpu, ...) { ...
cudaMemcpyAsync(a_gpu, ..., H2D, stream2);
gpu_foo<<<..., stream2>>>(a_gpu, ...); ...

}

void bar(...) { ...
gpu_bar<<<..., stream1>>>(...); ...

}

int main() { ...
foo(a_gpu, ...); ...
bar(...); ...
qux(...); ...
cudaDeviceSynchronize(); ...

}

GPU Profiler

CPU Profiler



Joint CPU–GPU-Profiling II
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▪ We collect timestamps on start and end of each function and kernel

▪ Using compiler instrumentation on CPU

▪ CUPTI Callback API for GPU

▪ We profile the CPU and trace the GPU events

▪ We store only limited trace data

▪ Calling context is tracked

▪ During post-processing we convert to a unified profile



Joint CPU–GPU-Profiling III
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▪ This allows recording of

▪ Synchronization of GPU actions with 

CPU functions

▪ Overlap of concurrent GPU activities

▪ Small result files with data necessary 

for modeling 

▪ Full call path up to kernel



4. Differential Performance 
Modeling
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Instrumentation

(Score-P, Extra-

Profiler)
Your application

Structured 

experiments

Instrumented 

application
Ranks

S
iz

e

Measurements CPU

Measurements GPU

Differential 

performance modeling

Model 

exploration

Ranks

S
iz

e

Models

Performance 

differences

depending on 

Rank and Size



Call-tree mapping

Defining expectations

Calculating differential models

Checking expectations
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4. Differential performance 
modeling



▪ Prefix matching with aggregation
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Call-Tree Mapping
Remember we are 

using exclusive values



• Runtime of GPU port is lower than 
runtime of CPU-only version

Faster than 
CPU-only 

implementation

• Energy usage of GPU port is lower 
than runtime of CPU-only version

Uses less energy

• Achieves same or higher hardware 
efficiency

Uses the 
hardware well
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Defining Expectations



Performance Modeling with 
Extra-P
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https://www.youtube.com/watc

h?v=Cv2YRCMWqBM

Watch Extra-P

overview video
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https://www.youtube.com/watch?v=Cv2YRCMWqBM
https://www.youtube.com/watch?v=Cv2YRCMWqBM


Automatic Performance 
Modeling
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Mj

main() { 
foo()
bar()
compute()

}

Instrumentation

Performance measurements

Input

Output

Mi

Extra-P

• All functions

Human-readable 

performance models 

of all functions

(e.g., 𝑡 𝑝 = 𝑐1 ⋅ log(𝑝) + 𝑐2)
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Performance Model Normal 
Form
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𝑛 ∈ ℕ
𝑖𝑘 ∈ 𝐼
𝑗𝑘 ∈ 𝐽
𝐼, 𝐽 ⊂ ℚ

𝑓 𝑥 = 

𝑘=1

𝑛

𝑐𝑘 ⋅ 𝑥
𝑖𝑘 ∙ 𝑙𝑜𝑔2

𝑗𝑘(𝑥)

𝑛 = 1
𝐼 = 0, 1, 2
𝐽 = {0, 1}

𝑐1
𝑐1 ⋅ 𝑥
𝑐1 ⋅ 𝑥

2

𝑐1 ⋅ log 𝑥
𝑐1 ⋅ 𝑥 ⋅ log 𝑥
𝑐1 ⋅ 𝑥

2 ⋅ log 𝑥
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▪ All models 𝑓𝑐
GPU and 𝑓𝑐

CPU are mathematical expressions

▪ We can calculate with them

Differential models express the difference

▪ Δ𝑐 𝑝1, … = 𝑓𝑐
GPU 𝑝1, … − 𝑓𝑐

CPU 𝑝1, …

▪ For a specific call tree entry 𝑐
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Calculating Differential Models



Hardware efficiency =
achieved FLOPs per second
achievable FLOPs per second

▪ Modeled with Extra-P

▪ We build models for FLOPs, time, and memory 

accesses from measurements

▪ All models are mathematical expressions

▪ We present this as a hardware adjusted runtime 

model to the user
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Hardware Efficiency



Interactive Exploration
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WP2: Measuring, Modelling, Mapping & Monitoring

Select 

configuration
Ranking best and 

worst call paths

Behavior of 

selected call path



Interactive Exploration
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WP2: Measuring, Modelling, Mapping & Monitoring

Select 

configuration
Ranking best and 

worst call paths

Behavior of 

selected call path



Interactive Exploration
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Differential 
performance models

Result: GPU port...
... is slower than expected

... is faster than expected

... meets expectation

Result: GPU port is asymptotically...

... slower than expected

... faster than expected

... faster and slower than expected
depending on the parameter



Summary
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Instrumentation

(Score-P, Extra-

Profiler)
Your application

Structured 

experiments

Instrumented 

application
Ranks

S
iz

e

Measurements CPU

Measurements GPU

Differential 

performance modeling

Model 

exploration

Code 

optimization 

(User)Optimized 

application

Ranks

S
iz

e

Models

Performance 

differences

depending on 

Rank and Size

Repeat to validate and 

continue improving
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